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Complexity and Fisher information
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The connection between an observer-based theory of measurement and a hierarchical classification of com-
plex systems in terms of topological exponents is discussed. This leads to generalized definitions of complexity
that capture different aspects of the structure of the trajectory space of complex systems.

PACS numbgs): 05.45-a, 05.30-d, 02.50.Wp, 89.86:h

In recent years, an observer-based theory of measuremeseries analysis; sgdé], p. 373. Following Brillouin’s treat-
has been developed by Friedenal. ([1,2] and references ment [9] of the relation between Boltzmann entropy and
therein in which many known physical laws can be derived Shannon information in the measurement of the position of a
from an extremum principle for the difference between theparticle, Frieden proposes that in additionl there must be
so-called Fisher information of a measurement and the infora second quantityl, the bound information which is intrinsic
mation bound in the physical quantity being measured. In ato the physical phenomenon being measured. Then, from the
apparently unrelated developmefstee [3] and references variational principled(1—J)=0, many of the Lagrangians
therein, many years of work about the meaning and defini-used in physics can be derived. This is called by Frieden the
tion of complexity in physical systems have led to a hierar-principle of extreme physical informatiofEPI). For ex-
chical definition by Badii and Politi4] that combines com- ample, from an attempt to measure the classical four-position
putational and physical aspects, through the use 0bfa boson(fermion), the Klein-GordonDirac) equation can
irreducible forbidden words and topological entropy. In thisbe derived. Frieden’s boolRef. [1]) has further details on
Rapid Communication, | establish and discuss a connectiothis work.
between these two theoretical advances. In particular, | show The Badii and Politi definitions apply to finite-alphabet
that the lowest-level definition of complexitg"=K,, or  sequences that represent the trajectory of a dynamical system
topological entropy of a language, is related to a modifiedn phase space, with one symbol per time step. Ideally, the
form of the Fisher information of the space wéjectories  symbols are determined by a generating partition related, for
generated by the language. This suggests generalizations @tample, to homoclinic tangenci¢$0] or invariant mani-
the hierarchical definition so that it includes metric aspectgolds [11]. The characterization of the particular language
and information about local minima. Based on this, | com-that corresponds to a given dynamical system in terms of
ment on higher-level definitions and the statistical inferencaopological exponents goes as follows. The first exponent
process itself, which | conjecture to be related to an extreme(@) is the largem limit of (1/m)In N(m), whereN(m) is the
ization of physical information performed by the observer.number of allowed words of lengtim. This limit is the to-

To begin, | will review Frieden’s work on measurement andpological entropy of the set of allowed word3{®) clearly is
information theory and the hierarchical definition alreadya measure of the cardinality of the system. For higher expo-
mentioned. nents, one must find the set of irreducible forbidden words of

In the 1920s the statistician Fishigs] proposed a metric the language, and the topological entropy of this set yields
of an efficient measurement proceddoe channel capacily ~ C(). An irreducible word is one that cannot be decomposed

o into subwords strictly shorter than itse@(?) is a measure of
| :f dx[p ()] 1) the difficulty of approximating the original language through
p(x) ' subshifts of finite type with increasing memaisee[ 3], pp.
255-260. Next, one finds the topological entropy of the
which is more convenient for our purposes in its discretgrreducible forbidden words in the set of irreducible forbid-

form, den words, which yield€®), and so on successively. It is
5 expected tha€**Y<C® and that eventually the topologi-

| :Ax—lz [P(Xn+1) —P(Xn)] ) ) cal exponents for a language become zero starting wi_th some
n P(Xn) given integerk. An attractive feature of this classification is

that it assignsCY)=0 to all periodic sequences, ar@f?

In the abovep(x) is the probability that a measurement =0 to all random sequences. Further properties and ex-
will yield the valuex, and the prime indicates a derivative. amples are given if3].
This metric differs greatly from the usual,p(x,)log p(x,) In what follows, consider a system for which we wish to
metric in that it contains local information about the distri- infer information regarding its dynamics. So, instead of a
butionp(x,), in the form of derivatives. For examplegives  single variable, we want each measurement to consist of a
information about the ruggedness of a distribution; see Refsequence of measurements as a function of time. Clearly, the
[1], pp. 29-30. The Fisher metric is not very familiar to simplest realization of this is a finite-alphabet string of length
physicists, except perhaps for its relation with crgss  mandp possible symbols. This string will be one point in the
Kullback-Leiblep entropy[6,7] or its importance in time- possiblem-dimensional space of trajectories, a hypercube in
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FIG. 1. One-state deterministic finite automaton with unequal =
transition probabilities. The arrow labels indicate symbol emitted
and probability of the transition. 9
0 Xn 63

the two-symbol case. This space ligsp™ points. The lan-

guage of our particular dynamical system will produce dif- FIG. 2. Landscape(x,) Vs X, in trajectory space, withp
ferent sequencegirajectorieg with different probabilities, =1/4, m=6 for the previous figuréschematig

which we can label respectively, and p(x,) in our trajec-

tory space. We can obtain purely topological information byWhen we do this, small differences will appear for different

modifying Eq.(2) in the following way: values ofp. For example, the landscape is totally flat for
=1/2 (1,=0, Ky=1), but not otherwise, because different

1 H(p(Xj+1)—P(X))]) (neighboring trajectories will occur with different probabili-

m:a Z flp(x)] ' ) ties; see Fig. 2, witlp=1/4 andm=6. Note that the trajec-

tory space represented in this figure is really six-dimensional.

whereH is the Heaviside step function, and the sum is evalu-Here trajectory labeléthe horizontal axisencode the corre-

ated only over the set of singular points for whipkix;) sponding binary trajectory, for example, 2610011, and
- y 9 P . P the real topology is that of a six-dimensional hypercube: tra-
=0. In other words, |, counts the divergences of

1/f[p(Xy)]. The denominator not only preserves the form ijectory 7 has as neighbors 3, 5, 6, 15, 23, andt@@se with

. ! . O Hamming distance equal to one
Flsher mformatl_on, but also allows some erX|b|I|ty. depend- For more complex languages the landscape can get ex-
ing on whethef is zero or nonzero, we can count isolated or

nonisolated forbidden words. Equatid) then calculates tremely complicated. In that case, a characterization not only

the fraction of trajectories which are not allowed, and it fol- of global minima but also of the distribution of minima of
lows thatl ..+ K —Jl ’ p(x,) can be attempted by the methods of Badii and Politi.
m 0~ +-

So, while the motivation of Badii and Politi’s topological However, some languages do not have a metric structure and

exponents is derived largely from computer-theoretic ideasSome of the comments above may not apply.
P gely P ' Conversely, topological exponents suggest possible gen-

we Sefe that it relates to the structure of the space of tra]e.ce'ralizations ofl, which include information about higher de-
tories: p(x,) can be seen as an energy landscape in)
m-dimensional space, for which both, andK, are counting
the fraction of global minima(forbidden wordg or its
complement, and higher topological exponents attempt t
further compress information about their location. It is natu-
ral, then, that the Badii and Politi measure should turn out to

be related to the modified Fisher information, which de- [p"(x)]2
scribes local featuregninima) of the distributionp(x,,). The "= f dx———
exact relation between topological exponemts, and both

the Shannon and Fisher information certainly deserves fur- | ) ) ,
ther study. will pick out information about the number of extrema, in the

But, in general, energy landscapes can be quite complS&Me way that the stand_ar_d Fisher information y_i_elds infor-
cated, and have a hierarchical structure with many locajnation about absolute minima. Note that an additional term
minima as well, as happens with spin glass®. The struc- N the numerator of the form1—sgnp’(x)] is needed to
ture of trajectory space is no exception to this, and ultimately¥ing!e out the minima. _ _ .
may need to be described with ultrametric concefit3], Finally, | will dls_cuss a p033|b_le connection be|th the
especially since our problem does share some features wiltfocess of model inference. I will specifically consider sys-
the spin glass probleiil4]: very high dimensionality, and a tems describable by a deterministic finite automaton, for
relatively sparse number of minima, especially after the com¥hich there has been much recent wptk—18. Consider a
pression through irreducible forbidden words is performed-Staté automaton with transitions that emit only two sym-

vatives than the first. While this will probably not contrib-
ute to the derivation of physically meaningful Lagrangians,
erhaps it can help to characterize probability distribution
unctions with a rich structure. For example, a metric of the
orm

(4)
p’(x)

several times. bols, 0 and 1(see Fig. 3. In this case the “physics” is given
To give a simple example of how to add a metric element

to Ky, consider a one-state finite automaton, with transitions 0 0/p

to itself emitting a O with probabilityp, and a 1 with prob-

ability 1— p; see Fig. 1. This system has no forbidden words, 6 e’

and Ky=1. However, we can now relax the conditions of

Eq. (3), and calculate the contributions to the original Fisher 1/(1-p)

information Eq.(2) from all points, not just from diver-
gences; this may require a treatment similar to that given to FIG. 3. Two-state deterministic finite automaton. The labels
four-vectors in [1], or approximating p’(x)~||[Vp(x)|.  have the same convention as in Fig. 1.
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by an allowed sequence of real stategyy., ABBBABA . .) nents. This leads to the following statement: definitions of
visited by the system in time, while the measurement, asomplexity should provide information about the structure of
before, is the corresponding sequence of symiffals this  p(X,) in trajectory space.

example, 000101. . .). The process of identifying particular ~ The results of this Rapid Communication can be summa-

segments of sequences with particular states of the systefized as follows:(i) topological entropy can be calculated,
(for examp|e’ |dent|fy|ng every emitted one as a return toWlth a modified form of the Fisher information of the trajec-

stateA) is part of statistical inference theory. tories of a system in phase space, which counts forbidden
There are several wayee, for example[16—1§) to words directly and is therefore related to the topological en-

infer from a long sequence which system states will lead tg/oPY Of the space of trajectories. In contrast to the single-

statistically equivalent futures. These are called causal State@oeasurergen_tthsr;lﬁ;uons qonsflo!{ﬁred b>t/ Fnedeg,hhere we are
and the models that are built on them are known as epsiloriz21c€Med Wi ynamicsorl the system, and hence se-
uences of measurements.) We can see the Badii and

machines; they can be inferred from measured data with helg ;"o 5 res as a characterization of the degree of struc-

Ic\)/1lt blna'n{[ tree?, cond|t|0ntgl d|sftr'|£ut|ons, %ncli or:her rTE)eth()ddstyre_in them-dimensional trajec_to_ry space _of the system, in
viany Interesting properties ot thesé models have been desa icylar, about the global minima in this space and the
rived [17], and in specific cases stat@d hence trajectory inimal encoding of information about their location. This
segmer,lt)scan be asgomate,d with particular segments of th%uggests an extension of tAéX measures to include a met-
system’s(not the trajectory’s phase spacl8]. A goal of  yic component, which has been illustrated with the case of a
statistical inference is to allow prediction in the best possibleyne-state deterministic finite automaton; this gives additional
way. This is achieved when the causal states correspond eyformation about local minima of the distributiqn(x,,) in

actly with the system states, which is not always possiblerajectory space. Conversely, this also leads to possible ex-
starting from a finite measurement sequejidd. However, | tensions of Fisher information to characterize additional
conjecture that the best possible encoding of histories to systructure in probability distribution functiongiii) For the

tem states will minimize — J, this is, the difference between simple case of systems describable by a deterministic finite
measurement and bound information; §€6], where the automaton, | conjecture that a statistical inference process
quality of an inferred model is measured through thethat assigns optimal system state labels to particular trajec-
Kullback-Leibler entropy, which is related 1o In this case, tories or sets of trajectories corresponds to an extremization
it is the statistician who is doing the EPI process. Note thaPf physical informatior(EPI) performed by the scientist ana-
the statistical inference process already described checks céyzing the system. This process requires the identification of
tain projections of the(x,) landscapéthe “past,” or initial ~ Patterns inp(x,) not necessarily related to globar loca)

m/2 symbols of a trajectolyto see if they have similar Minima.(iv) Finally, combining the last two points suggests
shapes in the complementary dimensidtie “future,” or that all definitions of complexity should provide information

final m/2 symbol3. In this sense, this process is trying to 200Ut the structure gi(xy) in trajectory space.
pick out certain patterns in thp(x,) landscape which are The author thanks the Santa Fe Institute, where part of
different, and complementary to those of topological expo-this work was done, for their hospitality.
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