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Complexity and Fisher information
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The connection between an observer-based theory of measurement and a hierarchical classification of com-
plex systems in terms of topological exponents is discussed. This leads to generalized definitions of complexity
that capture different aspects of the structure of the trajectory space of complex systems.

PACS number~s!: 05.45.2a, 05.30.2d, 02.50.Wp, 89.80.1h
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In recent years, an observer-based theory of measure
has been developed by Friedenet al. ~ @1,2# and references
therein! in which many known physical laws can be deriv
from an extremum principle for the difference between
so-called Fisher information of a measurement and the in
mation bound in the physical quantity being measured. In
apparently unrelated development~see @3# and references
therein!, many years of work about the meaning and defi
tion of complexity in physical systems have led to a hier
chical definition by Badii and Politi@4# that combines com-
putational and physical aspects, through the use
irreducible forbidden words and topological entropy. In th
Rapid Communication, I establish and discuss a connec
between these two theoretical advances. In particular, I s
that the lowest-level definition of complexity,C(1)5K0, or
topological entropy of a language, is related to a modifi
form of the Fisher information of the space oftrajectories
generated by the language. This suggests generalizatio
the hierarchical definition so that it includes metric aspe
and information about local minima. Based on this, I co
ment on higher-level definitions and the statistical inferen
process itself, which I conjecture to be related to an extre
ization of physical information performed by the observ
To begin, I will review Frieden’s work on measurement a
information theory and the hierarchical definition alrea
mentioned.

In the 1920s the statistician Fisher@5# proposed a metric
of an efficient measurement procedure~or channel capacity!,

I 5E dx
@p8~x!#2

p~x!
, ~1!

which is more convenient for our purposes in its discr
form,

I 5Dx21(
n

@p~xn11!2p~xn!#2

p~xn!
. ~2!

In the above,p(x) is the probability that a measureme
will yield the valuex, and the prime indicates a derivativ
This metric differs greatly from the usual(np(xn)log p(xn)
metric in that it contains local information about the dist
butionp(xn), in the form of derivatives. For example,I gives
information about the ruggedness of a distribution; see R
@1#, pp. 29–30. The Fisher metric is not very familiar
physicists, except perhaps for its relation with cross~or
Kullback-Leibler! entropy @6,7# or its importance in time-
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series analysis; see@8#, p. 373. Following Brillouin’s treat-
ment @9# of the relation between Boltzmann entropy a
Shannon information in the measurement of the position o
particle, Frieden proposes that in addition toI there must be
a second quantity,J, the bound information which is intrinsic
to the physical phenomenon being measured. Then, from
variational principled(I 2J)50, many of the Lagrangians
used in physics can be derived. This is called by Frieden
principle of extreme physical information~EPI!. For ex-
ample, from an attempt to measure the classical four-posi
of a boson~fermion!, the Klein-Gordon~Dirac! equation can
be derived. Frieden’s book~Ref. @1#! has further details on
this work.

The Badii and Politi definitions apply to finite-alphab
sequences that represent the trajectory of a dynamical sy
in phase space, with one symbol per time step. Ideally,
symbols are determined by a generating partition related,
example, to homoclinic tangencies@10# or invariant mani-
folds @11#. The characterization of the particular langua
that corresponds to a given dynamical system in terms
topological exponents goes as follows. The first expon
C(1) is the large-m limit of (1/m)ln N(m), whereN(m) is the
number of allowed words of lengthm. This limit is the to-
pological entropy of the set of allowed words.C(1) clearly is
a measure of the cardinality of the system. For higher ex
nents, one must find the set of irreducible forbidden words
the language, and the topological entropy of this set yie
C(2). An irreducible word is one that cannot be decompos
into subwords strictly shorter than itself.C(2) is a measure of
the difficulty of approximating the original language throug
subshifts of finite type with increasing memory~see@3#, pp.
255–260!. Next, one finds the topological entropy of th
irreducible forbidden words in the set of irreducible forbi
den words, which yieldsC(3), and so on successively. It i
expected thatC(k11)<C(k), and that eventually the topologi
cal exponents for a language become zero starting with s
given integerk. An attractive feature of this classification
that it assignsC(1)50 to all periodic sequences, andC(2)

50 to all random sequences. Further properties and
amples are given in@3#.

In what follows, consider a system for which we wish
infer information regarding its dynamics. So, instead of
single variable, we want each measurement to consist
sequence of measurements as a function of time. Clearly
simplest realization of this is a finite-alphabet string of leng
m andp possible symbols. This string will be one point in th
possiblem-dimensional space of trajectories, a hypercube
R3303 © 2000 The American Physical Society
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the two-symbol case. This space hasq5pm points. The lan-
guage of our particular dynamical system will produce d
ferent sequences~trajectories! with different probabilities,
which we can label respectivelyxn andp(xn) in our trajec-
tory space. We can obtain purely topological information
modifying Eq.~2! in the following way:

I m5
1

q (
j

H„up~xj 11!2p~xj !u…
f @p~xj !#

, ~3!

whereH is the Heaviside step function, and the sum is eva
ated only over the set of singular points for whichp(xj )
50. In other words, I m counts the divergences o
1/f @p(xn)#. The denominator not only preserves the form
Fisher information, but also allows some flexibility: depen
ing on whetherf is zero or nonzero, we can count isolated
nonisolated forbidden words. Equation~3! then calculates
the fraction of trajectories which are not allowed, and it fo
lows thatI m1K051.

So, while the motivation of Badii and Politi’s topologica
exponents is derived largely from computer-theoretic ide
we see that it relates to the structure of the space of tra
tories: p(xn) can be seen as an energy landscape
m-dimensional space, for which bothI m andK0 are counting
the fraction of global minima~forbidden words!, or its
complement, and higher topological exponents attemp
further compress information about their location. It is na
ral, then, that the Badii and Politi measure should turn ou
be related to the modified Fisher information, which d
scribes local features~minima! of the distributionp(xn). The
exact relation between topological exponents,I m , and both
the Shannon and Fisher information certainly deserves
ther study.

But, in general, energy landscapes can be quite com
cated, and have a hierarchical structure with many lo
minima as well, as happens with spin glasses@12#. The struc-
ture of trajectory space is no exception to this, and ultimat
may need to be described with ultrametric concepts@13#,
especially since our problem does share some features
the spin glass problem@14#: very high dimensionality, and a
relatively sparse number of minima, especially after the co
pression through irreducible forbidden words is perform
several times.

To give a simple example of how to add a metric elem
to K0, consider a one-state finite automaton, with transitio
to itself emitting a 0 with probabilityp, and a 1 with prob-
ability 12p; see Fig. 1. This system has no forbidden wor
and K051. However, we can now relax the conditions
Eq. ~3!, and calculate the contributions to the original Fish
information Eq. ~2! from all points, not just from diver-
gences; this may require a treatment similar to that given
four-vectors in @1#, or approximating p8(x);i¹p(x)i .

FIG. 1. One-state deterministic finite automaton with uneq
transition probabilities. The arrow labels indicate symbol emit
and probability of the transition.
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When we do this, small differences will appear for differe
values ofp. For example, the landscape is totally flat forp
51/2 (I m50, K051), but not otherwise, because differe
~neighboring! trajectories will occur with different probabili-
ties; see Fig. 2, withp51/4 andm56. Note that the trajec-
tory space represented in this figure is really six-dimensio
Here trajectory labels~the horizontal axis! encode the corre-
sponding binary trajectory, for example, 195010 011, and
the real topology is that of a six-dimensional hypercube: t
jectory 7 has as neighbors 3, 5, 6, 15, 23, and 29~those with
Hamming distance equal to one!.

For more complex languages the landscape can get
tremely complicated. In that case, a characterization not o
of global minima but also of the distribution of minima o
p(xn) can be attempted by the methods of Badii and Po
However, some languages do not have a metric structure
some of the comments above may not apply.

Conversely, topological exponents suggest possible g
eralizations ofI, which include information about higher de
rivatives than the first. While this will probably not contrib
ute to the derivation of physically meaningful Lagrangian
perhaps it can help to characterize probability distribut
functions with a rich structure. For example, a metric of t
form

I 85E dx
@p9~x!#2

p8~x!
~4!

will pick out information about the number of extrema, in th
same way that the standard Fisher information yields inf
mation about absolute minima. Note that an additional te
in the numerator of the form@12sgnp8(x)# is needed to
single out the minima.

Finally, I will discuss a possible connection ofI with the
process of model inference. I will specifically consider sy
tems describable by a deterministic finite automaton,
which there has been much recent work@15–18#. Consider a
j-state automaton with transitions that emit only two sy
bols, 0 and 1~see Fig. 3!. In this case the ‘‘physics’’ is given

l
d

FIG. 2. Landscapep(xn) vs xn in trajectory space, withp
51/4, m56 for the previous figure~schematic!.

FIG. 3. Two-state deterministic finite automaton. The lab
have the same convention as in Fig. 1.
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by an allowed sequence of real states~e.g.,ABBBABA. . . !
visited by the system in time, while the measurement,
before, is the corresponding sequence of symbols~for this
example, 0001010 . . . !. The process of identifying particula
segments of sequences with particular states of the sy
~for example, identifying every emitted one as a return
stateA) is part of statistical inference theory.

There are several ways~see, for example,@16–18#! to
infer from a long sequence which system states will lead
statistically equivalent futures. These are called causal st
and the models that are built on them are known as epsi
machines; they can be inferred from measured data with
of binary trees, conditional distributions, and other metho
Many interesting properties of these models have been
rived @17#, and in specific cases states~and hence trajectory
segments! can be associated with particular segments of
system’s~not the trajectory’s! phase space@18#. A goal of
statistical inference is to allow prediction in the best possi
way. This is achieved when the causal states correspond
actly with the system states, which is not always poss
starting from a finite measurement sequence@19#. However, I
conjecture that the best possible encoding of histories to
tem states will minimizeI 2J, this is, the difference betwee
measurement and bound information; see@20#, where the
quality of an inferred model is measured through t
Kullback-Leibler entropy, which is related toI. In this case,
it is the statistician who is doing the EPI process. Note t
the statistical inference process already described checks
tain projections of thep(xn) landscape~the ‘‘past,’’ or initial
m/2 symbols of a trajectory! to see if they have simila
shapes in the complementary dimensions~the ‘‘future,’’ or
final m/2 symbols!. In this sense, this process is trying
pick out certain patterns in thep(xn) landscape which are
different, and complementary to those of topological exp
r,
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nents. This leads to the following statement: definitions
complexity should provide information about the structure
p(xn) in trajectory space.

The results of this Rapid Communication can be summ
rized as follows:~i! topological entropy can be calculate
with a modified form of the Fisher information of the traje
tories of a system in phase space, which counts forbid
words directly and is therefore related to the topological
tropy of the space of trajectories. In contrast to the sing
measurement situations considered by Frieden, here we
concerned with thedynamicsof the system, and hence se
quences of measurements.~ii ! We can see the Badii an
Politi measures as a characterization of the degree of st
ture in them-dimensional trajectory space of the system,
particular, about the global minima in this space and
minimal encoding of information about their location. Th
suggests an extension of theC(k) measures to include a me
ric component, which has been illustrated with the case o
one-state deterministic finite automaton; this gives additio
information about local minima of the distributionp(xn) in
trajectory space. Conversely, this also leads to possible
tensions of Fisher information to characterize additio
structure in probability distribution functions.~iii ! For the
simple case of systems describable by a deterministic fi
automaton, I conjecture that a statistical inference proc
that assigns optimal system state labels to particular tra
tories or sets of trajectories corresponds to an extremiza
of physical information~EPI! performed by the scientist ana
lyzing the system. This process requires the identification
patterns inp(xn) not necessarily related to global~or local!
minima. ~iv! Finally, combining the last two points sugges
that all definitions of complexity should provide informatio
about the structure ofp(xn) in trajectory space.

The author thanks the Santa Fe Institute, where par
this work was done, for their hospitality.
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